Pubblications and submitted works
PUBLICATIONS
πVercesi, Eleonora, et al. "On the integrality gap of small Asymmetric Traveling Salesman Problems: A polyhedral and computational approach." Discrete Optimization 57 (2025): 100901. (Full paper here)
(Check out the HardATSPLIB)
π E. Vercesi, K. I. Encz, M. Mastrolilli, Branch-and-Bound Algorithms as Polynomial-time Approximation Schemes. LIPIcs, Volume 334, ICALP 2025. (Full paper here).
π A. M. Bernardelli, L. Bonasera, D. Duma, E. Vercesi, Multi-objective stochastic scheduling of inpatient and outpatient surgeries. Flexible Services and Manufacturing Journal, 1-55. (2024)
π E. Vercesi, S. Gualandi, M. Mastrolilli, L. M. Gambardella, On the generation of metric TSP instances with a large integrality gap by branch-and-cut. Mathematical Programming Computation, 15(2), 389-416. (2023)
(Check out the HardTSPLIB)
π S. Gualandi, G. Toscani, E. Vercesi, A kinetic description of the body size distributions of species. Math. Models Methods Appl. Sci. (2022)
π L. M Gambardella, S. Gualandi, M. Mastrolilli, E. Vercesi, Predicting the Empirical Hardness of Metric TSP Instances. 6th AIROYoung Workshop - Operation Research and Data Science in Public Services. (2022)
SUBMITTED WORKS
π A. M. Bernardelli, E. Vercesi, L. M. Gambardella, S. Gualandi, M. Mastrolilli, On the integrality gap of the Complete Metric Steiner Tree Problem via a novel formulation.
π E. Vercesi, A. Buchanan, The Dantzig-Fulkerson-Johnson TSP formulation is easy to solve for few subtour constraints. (preprint here)
π S. Huber, M. Mastrolilli, E. Vercesi, The falsification problem: How hard is it to falsify heuristics?
ONGOING PROJECTS
β³ The integrality gap of the Traveling Salesman Problem is 4/3 if the LP solution has less than n + 7 non-zero components.